Bearing and Gear Fault Detection Using Artificial Neural Networks

نویسندگان

  • Mayssa Hajar
  • Amani Raad
  • Mohamad Khalil
چکیده

Rotating machinery plays an important role in industrial applications. When these machines recently are getting more complicated, fault diagnosis techniques have become more and more significant. In order to keep the machine performing at its best, one of the principal tools for the diagnosis of rotating machinery problems is the vibration analysis, which can be used to extract the fault features and then identify the fault patterns. In addition, there is a demand for techniques that can make decision on the running health of the machine automatically and reliably. Artificial intelligent techniques have been successfully applied to automated detection and diagnosis of machine conditions. They largely increase the reliability of fault detection and diagnosis systems. Accordingly, the aim of this paper is to apply a feed-forward efficient neural network to classify a large number of vibration signals acquired from rotating machinery in different states: normal, good gear but faulty bearing, good bearing but faulty gear and faulty gear and bearing. The parameters given to the neural networks have been extracted from the power spectral density of the signals. The main impact of this neural network is to generate answers that give the combined state of gears and bearings simultaneously whereas most of previous neural networks have focalized mainly on gears or on bearings alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Detection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network

Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013